\geq
Δ.
4
⊏
w
\Box
Ν
0
Τ.
Ω
نه
7
_
٠
5
3
≷
1
3
>
α
₽
+
7

		STUDY MODULE DE	ESCRIPTION FORM		
	f the module/subject struction Chemis	stry		Code 1010104121010100053	
Field of	study		Profile of study	Year /Semester	
Civil	Engineering Fire	st-cycle Studies	(general academic, practical) (brak)	1/2	
Elective	path/specialty	-	Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle o	f study:		Form of study (full-time,part-time)		
First-cycle studies			part-time		
No. of h	iours			No. of credits	
Lectur	re: 20 Classes	s: - Laboratory: 10	Project/seminars:	- 4	
Status of the course in the study program (Basic, major, other) (brak)			(university-wide, from another field) (brak)		
Educati	on areas and fields of sci	ence and art		ECTS distribution (number and %)	
Prere	equisites in term	s of knowledge, skills and	the properties of basic chemica		
2	Skills	inorganic). Knowledge of basic physical phenomena and chemical processes. Ability to write chemical reactions and do the basic stoichiometric calculations.			
3	Social competencies	Awareness of the necessity for constant updating and complementing one's knowledge and skills.			
	•	ectives of the course:			
To gair	n the basic knowledge	of physicochemical processes occ	curring during production and a	pplication of building materials.	
	Study outco	mes and reference to the	educational results for	a field of study	
Knov	vledge:				
		nderstands theoretical basics of the ir production and application $[K_^{\prime}]$			
as well	l as he/she has a basi	wledge of building material choice, c knowledge of building materials r			
materia	the basis of the gained	I knowledge the student is able to ochoose types of building materials J05]			
-		e chemical reactions describing pro	ocesses occurring in mineral bo	onds, during polymer compound	

creation and in corrosion processes of building materials. - [K_U17, K_K03, K_U03, K_U05]

Social competencies:

1. The student has the ability to plan team work, to divide tasks among the members of the research team, to critically discuss the results and formulate collaborative conclusions (conclusions based on the team work). - [K_U01-K_U21, K_K01, K_K03, K_K09]

Assessment methods of study outcomes

Faculty of Civil and Environmental Engineering

Lectures

One colloquium - the dates given at the beginning of the semester. The colloquium meant to check the ability to write chemical equations and doing basic chemical calculations and checks the knowledge of basic physicochemical properties of building materials.

Laboratory classes

A short verbal test at the beginning of the class. A colloquium at the end of the semester covering the material of the laboratory classes.

Course description

Lecture

Structure and chemical properties of water. Water for constructional purposes. Chemical reactions in aqueous environment. Complex systems occurring in construction; colloidal systems.

Types of chemical compounds and chemical processes occurring during production, application and exploitation of building materials.

Chemical composition and structure of building materials as determinants of their physicomechanical and applicable properties. Thermodynamic conditions of durability of building materials. Phase transitions.

Basics of crystal chemistry of building materials. The structure of silicates and aluminosilicate minerals.

Kinetics of chemical reactions occurring in construction. Catalysis.

Chemistry of mineral binders. Hydraulic and air binders. Processes occurring during obtaining, bonding and hardening of cement, lime, gypsum, silicate and magnesium binders.

Structure and properties of metals applied in construction.

Polymers as components of plastics used in construction, their properties and obtaining.

Processes occurring during degradation of building materials. Corrosion of concrete. Corrosion of reinforcing bars in reinforced concrete. Corrosion of polymers.

Recycling of building materials.

Topics of the laboratory classes:

- 1. Basics of the chemical quality analysis. Identification analysis of chosen cations.
- 2. Basics of the chemical quantity analysis. Defining the sodium hydroxide concentration with the use of the acid-base titration.
- 3. Hydrolysis of the salts and defining the pH of the aqueous solutions.
- 4. Kinetics of chemical reactions.
- 5. Corrosion of building materials. Estimation of the corrosion stage of cement stone and definition of the stage of concrete carbonisation.
- 6. Chemical corrosion of steel. Estimation of the corrosion strength of ordinary steel and that with anti-corrosive coating.

Basic bibliography:

- 1. W. Skalmowski, Chemia materiałów budowlanych, Arkady 1997
- 2. L. Czarnecki, T. Broniewski, O. Henning, Chemia w budownictwie, Arkady, Warszawa 1996
- 3. W. Kurdowski, Chemia cementu i betonu, PWN, Warszawa 2010

Additional bibliography:

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	20
2. Participation in laboratories	10
3. Preparation to laboratories	3
4. Preparation to final laboratory	4
5. Praparation to final lecture	6

Student's workload

Source of workload	hours	ECTS
Total workload	43	4
Contact hours	31	3
Practical activities	10	1